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Materials and Methods. 

 

1. Continuum elastic theory for a disclination on a heterogeneous two-component 

membrane 

 

In order to gain a better insight into the elastic behavior of a two-component membrane, 

we analyze in the following section the simpler problem of determining the elastic energy 



of a single disclination on a disk, made of two elastic components and in the case of flat 

geometry. 

 

 

  Flat disk 

The stretching energy of a flat isotropic thin plate parallel to the plane  is 

traditionally written as (1): 

, 

where λ and µ are the two-dimensional Lamé coefficients, and U is the two-dimensional 

strain tensor  at small displacements ui from the equilibrium 

configuration. The equilibrium equations are , where  

is the stress tensor. The strain tensor can be obtained by inverting the stress-strain 

equation: , where Y and ν are the two-dimensional Young’s 

modulus and Poisson ratio. They are both functions of the two-dimensional Lamé 

coefficients: 

. 

All the equations above are local in character, and therefore they hold also in the 

inhomogeneous case where the elastic coefficients depend on the position 

. For two-dimensional geometries, it is customary to introduce the 



Airy stress function χ, which in polar coordinates  relates to the 

stress tensor simply by:  

. 

While any function χ yields a stress tensor that identically satisfies the equilibrium 

equations , not all functions χ correspond to a unique field of displacement 

vectors ui. The so-called compatibility equation that guarantees a unique solution of the 

equilibrium equations in terms of displacement vectors ui is a well-known biharmonic 

equation. In the case of constant Y and ν and a flat disclination at the origin r=0, it reads 

(2): 

, 

where  is the Laplacian in polar coordinates,  is the two-

dimensional Dirac delta function, and s is the disclination charge. In this work, we are 

mostly interested in five-fold disclinations and therefore set s=2π/6. 

When the Young’s modulus and the Poisson ratio are not constant functions, the 

compatibility equation is considerably more complicated but nonetheless straightforward 

to obtain. In the particular case of complete radial symmetry, , we 

have: 

 

. 

 



We solve this equation for the case of piecewise-constant radial distribution of two elastic 

components (see Figure 1). For simplicity, we assume that the two components having 

the same (constant) Poisson ratio , but different Young’s moduli . The 

first component occupies a circular region with radius , and the second component 

occupies the circular ring between  and . 

 

The solution can thus be found by first determining the general integral in the two 

regions,  and , and then by imposing suitable boundary conditions 

that connect the two solutions. Away from the boundaries, where the Young’s modulus is 

constant, we have .  And the equation obviously reads , which has four 

independent solutions that do not depend on the polar angle: 

 

Therefore, the general solution in the bulk regions is given by the (piecewise) linear 

combination: 

 

 

 
Figure 1. Radial symmetric distribution of two elastic 
components around a flat disclination at the origin (see text). 



The coefficients  can be determined by imposing the following boundary 

conditions. First, the radial components of the stress tensor 

 should vanish at , since the membrane is 

assumed to be unconstrained at the edge. Second, the Airy function  and the stress 

tensor  must be continuous across the boundary at  in order to have equilibrium. 

Third, since the Airy function is defined up to an additive constant, we assume its value 

at the origin to be . Moreover, the requirement that the displacement must be 

finite at implies . Finally, by applying the Gauss theorem to the original 

differential equation over a disk of radius and , we get  and 

. We obtain:  

whe

re we introduced the dimensionless parameters ,  and . 

From this expression we can compute the stress tensor and the strain tensor, from which 

the initial integral for the stretching energy follows as well. The result is lengthy but 

straightforward. It is useful to express in terms of the area fraction f occupied by the 

#1-component, that is f=area(#1)/(area(#1)+area(#2)), or equivalently, , and to 

let  be the stretching energy for such a configuration. We verified that for 

, we recover the classic result  (2). Moreover, we are 

interested in comparing  with the stretching energy  for the case where 



the #2-component occupies the inner region (and ). The two energies are 

plotted in Figure 2. Two features can be observed: first, the stretching energy scales as 

~ for large radii, as expected. Secondly, the less stiff component (i.e. having smaller 

Young’s modulus) tends to occupy the region over the disclination, except at very small 

fraction values where the situation is the opposite. 

 

 

 

We compared our analytic result with a numerical Monte Carlo simulation. Some 

snapshots of the simulations are presented in Figure 3, and a plot of the corresponding 

radial density of the two components and the stretching energy are shown in Figure 4 and 

Figure 5, respectively. Figure 4 confirms the tendency for the weak component to occupy 

 
Figure 2. Stretching energy F of a five-fold disclination at the center of a disk 
covered concentrically by two different elastic components as a function of the 
coverage area fraction f. The parameters used for this plot are 

. The energy of the configuration with the component #1 
covering the inner region with  is in blue (thick line), while the 
configuration where component #1 covers the outer region with  is in red 
(dashed line). 



the region close to the center; even though the contribution from the disk boundaries is 

not negligible (our simple theoretical analysis neglects the details of boundary effects).  

We note that the curve in Figure 5 has a trend in qualitative agreement with the exact 

curve in Figure 2. Finally, Figure 6 shows how the total stretching energy is distributed 

around the five-fold disclination. While most of the stretching energy is concentrated 

near the center of the disk, where the five-fold disclination is located and therefore rich in 

the soft component, there are important boundary effects. Such terms break the axial 

(rotational) symmetry, which we have assumed in our theoretical analysis and, in our 

opinion, are ultimately the consequence of the discreteness associated with the numerical 

model used in our Monte Carlo simulations.    

 

 

   

   
 
Figure 3. Snapshots of Monte Carlo configurations at different relative ratio of the  two-
components (from left to right, top to bottom, 0, 0.1, 0.3, 0.5, 0.7, and 0.9 , respectively) 
with a flat 5-fold disclination. The weak component (in blue) has Young modulus Y = 
11.5 (in arbitrary units) while the strong component (in red) has Y = 115. 



 

 

 

 
Figure 5. Total stretching energy F of the configurations presented in Figure 3, as 
a function of the relative fraction f . The dots (simulation data) are joined with 
lines just to help the eye. 

 

 
Figure 4. Relative density along radial direction of the two components at different 
ratios f, for the flat configurations in Figure 3. The inner region at small R is 
occupied mostly by the softer component.  
 



 

 

Out-of-plane bending of a disk 

 

In Figure 7 we show snapshots of the buckled five-fold disclination for six different 

relative fractions of the elastic components. For discussion, see the Model and Method 

section in the article.  

Finally, in Figure 8 we plot the bending energy of the configurations (similar to the ones 

in Figure 7) at different area fractions. We verified that the decay of the energy with the 

area fractions is logarithmic, as predicted in our theoretical analysis presented in the 

Model and Method section in the article. 

 

 
Figure 6. Three-dimensional plot of the stretching energy density at f=0.3, as a 
function of the position on the disk. Besides boundary effects, most of the 
stretching energy is condensed around the central five-fold disclination rich with 
the soft-component. 



 

 

 

 

 

 
Figure 8. The bending energy of the two-component systems showed in Figure 7 
at different area fractions. 

   

   
 
Figure 7. The buckling of a five-fold disclination at the center of a disk with radius 
R=10 (lattice units). From top to bottom, left to right, the relative fractions are: f=0, 
0.1, 0.35, 0.5, 0.7, 1.  The component in blue has elastic parameters 

and favors flat configurations while the component in red has 
 which favors buckling. Note that slight curvature of the bottom 

right configuration is the low-wavelength thermal excitation of the plate and has 
nothing to do with the disclination induced buckling.  
 
 



Parameter space for a two-component system 

 

In Figure 9 we show a cartoon of the parameter space and indicate regions where the 

shape competition between the two elastic components occurs (regions III, IV, and VI in 

Figure 9; for discussion see the caption). The onset of a buckling transition, controlled by 

the Föppl–von Kármán number γ=YR2/κ, where R is the shell radius, is indicated by the 

dotted line. Note that, for fixed Y and κ, the slope of the transition line is inversely 

proportional to R2, consistent with the observation that large homogeneous shells are 

predominantly icosahedral. In order to observe faceting in a shell with a given radius, at 

least one of the components would have to have a large bending rigidity while 

maintaining a low Young’s modulus; that is, it would greatly prefer stretching over 

bending. On the other hand, for very small shells, the transition line approaches the Y-

axis, and the material would have to have exceedingly high Young’s modulus and a very 

low bending rigidity. Further, for small shells, the discrete (atomistic) nature of the 

material plays an important role, and our analysis based on the continuum elastic theory 

becomes questionable. Therefore, in both cases, for the shape competition to take place, 

at least one component should have either an relatively large or relatively low Y-to-κ 

ratio. In summary, faceting effects reported in this study are expected to occur for a 

narrow range of shell sizes, where the shape competition is consistent with the elastic 

parameters of soft materials. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9: Each elastic component is characterized by two parameters, the bending 
rigidity κ and the Young’s modulus Y, defining a four-dimensional parameter space for a 
two-component system. Without loss of generality we assume κB≥ κA. The dotted line 
indicates the onset of the buckling transition, as determined by the Föppl–von Kármán 
number γ (see text); above the transition line, the shell at a fixed radius buckles, while 
below, it stays spherical (flat). Left panel: If YB is chosen such that a shell rich in B 
component buckles (blue dot), there are three possible choices for the A component.  In 
regions I and II, an A-component shell also buckles. In region III the A-component shell 
stays flat, resulting in competition between two components, one of which tends to 
buckle (B) and the other that prefers to stay flat (A). Simulations for a single disclination 
disks (Figure 7) were performed in this region, as indicated by the green dot.  Right 
panel: For YB chosen in the region where the B-component shell is spherical (flat) there 
are four ways to choose parameters for component A. Regions V and VII are of little 
interest because the A-component shell also prefers spherical (flat) geometry. Shape 
competition occurs in regions IV and VI, where a shell entirely made of component A 
buckles. The red dots indicate the parameters for which the Monte Carlo simulations 
were performed (see Figure 1 in the article and Figures 10 and 11 below).  The shaded 
area indicates the redundant region where κA>κB. 



 

2. Gallery of shapes 

 

In Figures 10 and 11 we show snapshots of relaxed shapes obtained from Monte Carlo 

simulations for a range of fractions f of the hard component. In Figure 10 we set YA=YB, 

in order to drive the faceting via the difference in the bending rigidity between the two 

components. This is reinforced by the results obtained for κA=κB (Figure 11), but with a 

different Young’s modulus, where a smooth transition between sphere and icosahedron is 

found. In terms of the parameter-space diagram in Figure 9, the strongest faceting effect 

occurs between regions IV and VI. This is to be expected, as faceting requires the 

curvature to concentrate in the region along edges between two faces, which is 

energetically favorable only if a component with small κ is present. Therefore, faceting 

will be favored for shells with two components having comparable Young’s modulus, but 

sizably different bending rigidity.  

 

Notable examples of regular and irregular polyhedra are bacterial microcomponents, 

which are shells constructed from proteins involved in a large number of metabolic 

processes (3). They are D=100-150nm in diameter with the outer shell built entirely of 

proteins. The shell is d=3-4nm thick and very heterogeneous, typically consisting of up to 

20,000 proteins of 10-20 different types. Their relatively large size and small thickness, 

d/D<<1, renders the elastic theory for thin shells applicable to these microcomponents.  

Elastic theory of thin shells(1) predicts that Y~d, while κ~d3, and we have for simplicity 

assumed that the three-dimensional Poisson ratio for both components is equal. 



Therefore, even a small variation in thickness, caused by different sizes of shell proteins 

for example, will result in a much stronger change in κ than in Y. This is consistent with 

our observation that the faceting is much more sensitive to variations in the bending 

rigidity than in the Young’s modulus, and might explain the faceted to non-icosahedral 

shapes of cellular microcomponents.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. Snapshots of configurations at different fraction f. The A-component (in blue) 
has YA= 11.5, and κA =0.6, while the B-component (in red) has YB=11.5, and κB =11.5 . 
The radius of the shell is about R~11.3 in units of the average bond length. The fraction 
f varies (from left to right, top to bottom) as f=0, 0.02, 0.04, 0.1, 0.15, 0.2, 0.3, 0.35, 0.4, 
0.5, 0.55, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.955, 0.96, 0.965, 0.975, 0.977, 0.985, 1.  



 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
3. Analysis of FvK number 
 
In order to illuminate the difference between two possible discretizations, the first 

assigning the elastic properties to the edges, and the second being the more common  

vertex-based definition, we compare the onset of a buckling transition of a homogeneous 

sphere with Young modulus and bending rigidity defined on edges or vertices. We scan a 

range of FvK numbers γ, and compute the asphericity, , where Ri is the 

distance of vertex i from the center, and <R> is the average radius. For a sphere, the 

 
Figure 11. Snapshots of configurations at different fraction f. The A-component (in 
blue) has YA=23, and κA =1.15, while the B-component (in red) has YB=1.15, and 
κB =1.15 . The radius of the shell is about R~11.3 in units of the average bond 
length. The fraction f varies (from left to right, top to bottom) as f=0, 0.01, 0.02, 
0.03, 0.04, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 
0.75, 0.8, 0.85, 0.9, 0.95, 1.  



asphericity is zero, and it increases as the object gradually deforms away from a spherical 

shape. In Figure 12 we show asphericity as a function of FvK number for a (p,q)=(6,6) 

sphere with the Young modulus Y and the bending rigidity κ defined on vertices (red) or 

edges (green). We note that that both definitions result in the same curve. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Effects of line tension 

 

We briefly address the effects of line tension on faceting as discussed in this study.  

Here we use a simplest definition of the line tension, where the contact between two 

vertices of different type is penalized by λ, i.e., , with δti,tj being the 

Kronecker delta symbol equal to one if both vertices i and j are of the same type. Note 

that this definition requires the components being placed on vertices rather than on edges, 

 
Figure 12: Asphericity as a function of the FvK number for Young modulus Y 
and bending rigidity κ defined on vertices (red) or edges (green). 



which does not pose a problem as shown above. We also point out that in our definition 

of the line tension, λ has units of energy.  

 

In Figure 13 we show snapshots of the relaxed shapes of a (p,q)=(12,3) elastic shell with 

50% of the soft component for a number of values of the line tension. For small λ one 

observes faceting essentially identical to the case with no line tension. As the line tension 

is increased, the components segregate and form patches. At intermediate values of λ, we 

find plate-like regions of the hard component separated by the soft material. At very large 

values of λ, the components fully phase-separate, and we observe Janus-like structures, 

where the shape of each section is determined by its local elastic properties, accounting 

for the hemisphere of the hard component and the buckled region on the soft side. A full 

study of the properties of multicomponent elastic shells in the presence of line tension 

between components will be published elsewhere. 
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Figure 13: Snapshots of the relaxed shapes of a (p,q)=(12,3) elastic shell with 50% of 
soft component (blue) with line tension λ=0(a), 0.1(b), 0.3(c), 0.5(d), 0.6(e), 1.0(f). 
YA= 5.77, κA =0.06, while YB=5.77, and κB =28.9.Note that in our model the line 
tension λ has units of energy. 
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